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A minimal principle in the phase problem
H.A. Hauptman

1. Introduction

1.1. The Phase Problem

The intensities of a sufficient number of x-ray diffraction maxima
determine a crystal structure. The available intensities usually exceed
the number of parameters needed to describe the structure. From these
intensities a set of numbers |E;| can be derived, one corresponding to
each intensity. However the elucidation of the crystal structure
requires also a knowledge of the complex numbers E, = IIE- jexp(i¢,), the
normalized structure factors, of which only the nagnitudes |E,| can be
determined from experiment. Thus a “"phase™ ¢,, unobtainable from the
diffraction experiment, must be assigned to each |E;|, and the problem
of determining the phases vhen only the magnitudes |E,| are known is
called "the phase problem"™. Owing to the known atomicity of crystal
structures and the redundancy of observed magnitudes |E,|, the phase
problem is solvable in principle.

Direct methods are those procedures vhich attempt to solve the
phase problem by reconstructing the lost phase informaticn directly from
the observed structure factor amplitudes. These methods rely on the
existence of relationships among the structure factors wvhich express the
values of certain linear combinations of phases, called structure

invariants, in terms of normalized structure factor magnitudes.
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1.2. The Normalized Structure Factors E

In the equal atom case the normalized structure factors are defined

by
N
1
Eg = |Egl exp(i¢y) = N—l-;-z— Zl exp [2niH-rj) (1)
J=

vhere H is an arbitrary reciprocal lattice vector, N is the number of
atoms in the unit cell and ry is the position vector of the atom labeled
j. The magnitudes |E| are directly obtainable from the diffraction

intensities, but the phases ¢ are lost in the diffraction experiment.

1.3. The Structure Invariants

Although the values of the individual phases are known to depend on
the structure and the choice of origin, there exist certain linear
combinations of the phases whose values are determined by the structure
alone and are independent of the choice of origin. These linear
combinations of the phases are called the structure invariants. The
most important classes of structure invariants, and the only ones to be

used here, are the three-phase structure invariants (triplets),

Yk =Yt B Vg (2)
and the four-phase structure invariants (quartets),
(P I AR TR TR SR T 3

2. The Probabilistic Background

It is assumed that the position vectors r are random variables
vhich are uniformly and independently distributed. Then the structure
invariants, as functions of random variables via Egs. (1)-(3), are

themselves random variables, and their conditional probability
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distributions, assuming as known certain magnitudes [E|, may then be

found.

2.1. The Conditional Probability Distribution of the Triplet
For fixed reciprocal lattice vectors H and K, the conditional
prebability distribution of the triplet 4., [Eq. (2)), assuming as known

the three magnitudes

lBgts [Bels [Eggls (4)

is known to be

1
Pi#| = s—y———— exp {A,, cos ¢ (3)
[ "ﬂx] 2T (A [HK ]
vhere
2
A = Ji72 |EgExEq x|+ (6)

and I is the Modified Bessel Function. Eq. (5) implies that the mode of

$ux is zero, the conditional expectation value of cosine ¢, given A

HE?
is
I.(A,,)
1" HK
E‘.[CDS ¢HKIAHK] = W >0, (7)

and that the larger the value of A,, the smaller is the conditional
variance of cos 4,., given A,,. It is to be stressed that the
conditional expected value of the cosine, Eq. (7), is alvays positive

since A, >0.

2.2. The Quartet

For fixed reciprocal lattice vectors L, M, and N, the conditional

probability distribution of the quartet ¢, (Eq. (3)], assuming as
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known the seven magnitudes

By ls (Byls IEgls 15 pnls (Bragls [Bunds Byl ®

is nov known. For our purpose it will be sufficient to use the

approximation
P [i|nm] = m exp [aLHH cos f] (9)
vhere
2 2 4 2
Biaow = NIELENENEL nanl { Bl + [Byuyl” = By |” -2 } . (10)

As in Eq. (8) wve nov find

Ly (Bpy?

T L)

cfcos 4 [BLa) (11)
and the larger the value of |B ,.,| the smaller the conditional variance
of cos ¢,,,. given B ... In sharp contrast to Eq. (7}, the conditional
expected value of the cosine [Eq. (11)} is now positive or negative

according as

Biuw 2 O (12)

i.e., in viev of (10), according as the “cross-terms” |E .|, |E..l:
and iE“,&I are mostly large or mostly small, respectively. Those
quartets for vhich B, <0 are known as negative quartets because their
cosines are probably negative. The special importance of the negative
quartets wvill be emphasized in the sequel. It is to be stressed that it
is only rhe expected values of the cosines of the negative quartets
which are negative; not all cosines of negative quartets are necessarily

negative.
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3. The Minimal Principle

3.1. The Heuristic Background

It is assumed that a crystal structure S in the space group G and
consisting of N identical atoms in the asymmetric unit is fixed, but
unknown, that the magnitudes |E{ of the normalized structure factors E
are known, and that a sufficiently large base of phases, corresponding
to the largest magnitudes [E|, is specified.

The mode of the triplet distribution [Eq. (5)] is zero and the
variance of the cosine is small if A,, (Eq. 6) is large. In this vay

one obtains the estimate for the triplet ¢,, [Eq. (6)]:
byg =ttt by -0 a3

which is particularly good in the faverable case that 4,,, [Eq. (6)], is
large, i.e. that [Bg|, |BEy|, and |E,, .| are all large. The estimate
given by Eq. (13) is one of the cornerstones of current techniques of
direct methods. It is surprising how useful Eq. (13) has proven to be
in the applications especially since it ylelds only the zero estimate of
the triplet, and only those estimates are reliable for which |Eg|, |E.l,
and |E,,, | are all large. Clearly the coefficient 2/N*/? in Eq. (6),
and therefore A, as well, both decrease with increasing N, i.e. vith
increasing structural complexity.- Hence the relationship [Eq. (13)]
becomes increasingly unreliable for larger structures, and the
traditional step-by-step sequential direct methods procedures based on
Eq. (13) eventually fail.

By their almost exclusive reliance on the triplet relationship
{Eq. (13)], the traditional direct methods techniques do not fully
exploit our detailed knowledge of the triplet distribution [Eq. (5)| and

ignore almest completely the quartet distribution [Eq. (9)]. It is now
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proposed to determine the values of the phases ¢ in such a vay that they
generate triplets and quartets vhich, for each fixed value of A, or

B uw+ have distributions vhich agree with their theoretical
distributions, Eqs. (5) or (%), respectively. More specifically, one
determines the values of a set of phases as those vhich generate
triplets 4,, and quartets é,,, vﬁose cosines have, for each fixed value
of h“ and B,,,, conditional expectation values and variances in
agreement with their known theoretical values. In this way one exploits
more effectively our knovledge of the triplet and quartet distributions.
In this connection it should be noted that, for a sufficiently large
basis set of phases, say more than some 300 phases in the base, the
number of structure invariants vhich they generate exceeds by far (two
or three orders of magnitude at least) the number of unknown phases ¢.
Owing to this great redundancy, a large number of identities among the
structure invariants, equal to the difference between the number of
structure invariants and the number of phases, must be satisfied. An
important aspect of our present formulation is that all ildentities among
the structure invariants, vhich must of necessity hold, will in fact be

satisfied.

3.2. Triplets
In view of Eq. (7) and the previous discussion one nov replaces the
zero estimate [Eq. (13)| of the triplet ¢,  [Eq. (2)] by the estimate

I.(AL,)
Il(nﬂx) (14)
0*HK

cos *HK s

and expects that the smaller the variance, that is the larger A,,, the
more reliable the estimate [Eq. (l4)] will be. Hence cne is led to

construct the function, determined by the known magnitudes |E].
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2

Ty (A

1 1

R = . E AHK [cos *HK - IO(AH!() (15)
Z HE H.E

which is seen to be a function of all those triplets ¢, vhich are

generated by a prescribed set of phases (¢}. Recall that if the basis
set of phases {¢} is sufficiently large then there are many more
structure invariants ¢,, than individual phases #, and a myriad of
identities among these structure invariants must, of necessity, then be
satisfied. It is therefore natural to suppose that that set of values
for the structure invariants ¢,, is best which minimizes the residual R,
[Eq. (15)), subject to the constraint that all identities among the
structure invariants are in fact satisfied.

Since the triplets ¢,, are defined by Eq. (2) as functions of the
individwal phases ¢, Eq. (15) defines R implicitly as a function of the
individual phases. One therefore naturally anticipates that that set of
values for the individual phases is best which minimizes the residual R,
Eq. (15), nov regarded as a function of the individual phases ¢. The
advantage of this formulation is that all identities among the structure
invariants will then automatically be satisfied, and it is unnecessary

to define in further detail wvhat the nature of these identities must be.

3.3. The Minimal Principle for Triplets

In order to derive the conditions under which the formulation of
the minimal principle given in the previous paragraph is valid, one
first defines R, as the value of R [Eq. (15)] obtained vhen the phases
are equal to their true values for some choice of origin and
enantiomorph. One then defines R, as the value of R when the phases are

assigned values at random so that
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<cos ¢HK > = <Fos 2¢HK > = Q. (16)
H,K H,K

Vith these definitons for R, and R, it may then be shown that
1
Ry < 3 < Rg. (17)
In spite of the inequalities, [Eq. {17)], it still does not follov
that Ry is the global minimum of R because, as it turns out, there exist
certain special values of the phases which yield values for R [Egq. (15)]
even less than R;. It is for this reason that one must introduce the

quartets, in particular the negative quartets, in order to insure that

the gicbal minimum yields the true values for the phases.
3.4. The Minimal Principle

In viev of the previous paragraph one incorporater the negative

quartets into the definition of the minimal function as follows:

. (Am(} ]
1 E
A cos % - T ca 5 IB
E HK[ HR © Io(Age) LMN
H,K
Z bak * Z \“um|
H.K L,4,N

. (BLHN’

T (B

Fos ¢LHN
R:

(18)

where the double sum is taken over all triplets $,, generated by the
basis set of phases, and the triple sum is taken over all the negative
quartets ¢.,,, that is those for vhich B,,,<0.

There remains one final word of caution. In general the number of
phases in the base must exceed the number of parameters, 3N, needed to
define the crystal structure. Hence the phases themselves are not
independent variables but must themselves satisfy a number of identities

equal to the number of phases diminished by 2N. Hence the final
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formulation of the minimal principle is simply that those phases are
correct which minimize R [Eq. (1B)] subject to the constraint that all

identities the phases be satisfied.

Since, for fixed origin, the crystal structure determines the
values of all the phases, the function R may be regarded as a function
of structures, T, and the minimal principle asserts that the structure T
vhich minimizes R is the desired structure S.

Strategies for finding the global minimum of R which employ a
modified simulated annealing algorithm have been devised. The method
has been used (employing also a small number of positive quartets) to
solve the two (previously known) structures in the space group
P2,2,2,:C,48,,0,,, Z=4, 2138 reflections, 300 phases in the base, number
of triplets = 7110, number of negative quartets = 139,290, number of
positive quartets = 8805, error free data; and C N0, ,B,,,, Z=4, 5024
reflections, 400 phases in the base, number of triplets = 6514, number
of negative quartets = 90,001, number of positive quartets = 2880,
experimental data.

In this work the only structure invariants used wvere the triplets
and the (mostly negative) quartets the probabilistic theories of vhich
are vell known. It is not yet known whether the method described here
vill be useful for structures of much greater complexity because it is
still not clear hov rapidly the size of the phase base must increase as

a function of increasing N.



