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1. Introduction

The "fundamental theorem" of X-ray crystallography is (see, e.g., Coppens, 1996;
Bricogne, 1996) the duai-space Fourier transform relationship

7
Fth) = p(n) n
F |

between crystal structure factors in reciprocal space,
F(h) = 7 [p(r)] = {y &r p(r) exp (+2miher) , @
and the unit-cell electron density distribution in crystal space,
p(r) = F'[F(h)) = V' I, F(h) exp (-2niher) . 3)

In crystal space r=xa + yb+zc = X, r'a,, and in reciprocal space h = ha* + kb*
+c* = T ha*, where a* =axa,/V, V=(axa)a,, a*ea =35", 6\ =1 if
i=j, 8,=0if i=}, and i, j, k=1, 2,3 (see, e.g., Shmueli, 1996; Sands, 1996).
Due to the dual-space reciprocity, her reduces 1o her = hx + ky + ¢z,

The structure factor is gi(ven by an atomic summation,

N
F(h) = T f(h) W(h) exp (2niher) , 4)
a=l

where, for atom a among the N atoms of the unit cell, r, is the atomic position vector,
W,(h) is the atomic Debye-Waller disorder and/or thermal vibration factor, and f,(h) is
the atomic X-ray scattering factor. The Debye-Waller factor is the Fourier transform
of the probability density of atomic displacements from the mean atomic position,
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W (h) = Fp,(r, - (r))], and, at X-ray wavelengths sufficiently far removed from the
crystai's resonant electronic absorption edges, the atomic scattering factor is the
Fourier transform of the atomic electron density, f(h) = Fp(r - r)] =

F v (r -r)|*. For spherically symmetric or spherically averaged atomic densities,
f(h) = f(|h|) = f,(h) = F[4xnr’ |R(0)|*}, where R(r) is the radial part of the atomic
wavefunction {(r). The Fourier transform product (f, W) in reciprocal space is the
Fourier transform of the convolution product (p,*p,) in crystal space, i.e.,

f(h) W (h) = F[p(r - r)*p(r, — {r))]. As the reciprocal space radius |h| increases
through 0 < |h| < e, the Debye-Waller factor decreases through 1 2 W, > 0, and the
atomic scattering fa.ctor decreases through Z, 2 f,> 0.

The electron density (3) is a real- valued non-negative function, but the
structure factor (2) or (4) is in general a complex-valued function,

F=X, f,W,exp (i¢) = X, f, W, (cos ¢, + i sin $))
=3 fW,cosd,+il f,W,sind, = I A, +iY,B, = A+B,
F(h) = A(h) + iB(h) = [F(l)|[cos d(h) + i sin $(h)] = [F(h)| exp [id(h)] . (5)

Structure factor magnitudes |F(h)| can be obtained from kinematical diffraction
measurements of Bragg reflection intensities,

I(k) o< [F(h)[* = F*(h) F(h) , ©

where F* = |[Fle™ = A - iB is the complex conjugate of F, with the imaginary unit i
everywhere replaced by ~i. The corresponding structure factor phases ¢(h), however,
cannot be measured experimentally {although, in specialized experiments designed to
measure dynamical diffraction effects (see, e.g., Weckert, Schwegle, and Hiimmer,
1993; Weckert and Hiimmer, 1997) certain three-phase sums, ¢(h.k) = ¢dh) + d(k) +
$(~h-k), can be measured]. Possible values for the unmeasurable phases are
constrained by the requirement that, in conjunction with a sufficient subset that
contains the largest elements of the in-principle infinite set of measurable magnitudes,
the phases should produce via (3) an electron density distribution that is reai, non-
negative, and atomic, i.e., a unit-cefl density of the form p(r) = I, p(r - r,), which
exhibits distinct local maxima corresponding to a superposition of resolved atomic
densities.

For hard, small-unit-cell crystals conlammg Z asymmetric crystal chemical
units per unit cell and N/Z s 100 independent non-hydrogen atoms per crystal
chemical unit, with the atoms packed more-or-less tightly in metallic, covalent, ionic,
or molecular structures, the usual experimental situation is that the number n of Bragg
reflection intensities measurable as significant above background greatly exceeds the
number 3 N/Z of unknown atomic coordinates; commonly, n 2 I00N/Z, The
unmeasurable phases are then, in principle, over-determined by systems of
simultaneous equations based on (4). The equations are, however, transcendental, so
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straightforward analyticat solution is precluded, and we are left with the
crystallographic phase problem soivable in principle, but in practice difficult to soive.

For soft, large-unit-cell crystals of biological macromolecules containing
N/Z = 1000 independent non-hydrogen atoms in loosely packed biomolecules and
solvate water moiecules, the usual experimental situation is much less favorable,
because the atomic Debye-Waller factors in large-molecule crystals are generally
smaller than those in smail-molecule crystals by factors of about e = 0.1 to
¢ = 5x10%. This resuits in much steeper fall-off of the atomic [f(h) W (h)] values
with increasing [h|, so that n s 10N/Z and experimental resolution limits '
dpp = /h| g, 2 1.5 A are commonplace. In practice, |hi,,. is defined operationaily
as the |h| at which the local average measurement precision, {(|F(h)|))/{F(h)|%,
falls to ~50% due to the fall-off of [f,(h) W (h)] values with increasing {h]. In
conséquence, biomoiecular crystal structure analyses are usually carried out, not at
atomic resolution, but at resolutions corresponding to small groups of atoms. Atomic
structures within the groups are assigned from a database of known structures of
chemical functional groups determined in atomic-resolution analyses of small-unit-cell
crystals. Biochemical functional groups typically contain four to ten non-hydrogen
atoms and have group diameters of ~3.5 A. The functional groups in proteins include,
of course, C*,,~CO-NH~-C" , main-chain peptide groups and side-chain groups of the
20 common amino acids. For macromolecular crystals that do not diffract to atomic :
resolution, the "atomicity” constraint translates to a requirement for distinct high-
density volumes enveloped by isodensity surfaces at p o o(p) = {(p - {p))>"*
surrounding resolved groups or chains of atoms separated by distances that exceed the
experimental resolution limit.

With due allowance for experimental resolution limits, the over-determinacy,
non-negativity, and atomicity constraints on the unknown phases imply magnitude-
conditioned relationships among them. Based on the existence of such refationships,
and using hypothetical random-atom structures as starting models, the probabilistic
phase estimation methods that are the subject of this book have been developed. The
probabilistic treatments of the crystallographic phase problem may be broadly
classified as either frequentist or Bayesian. Frequentist approaches are formulated in
terms of normalized structure factors,

N
E(h) = Fhy{ Z {f(h) W ()P}, M

a=l
and Bayesian approaches are formulated in terms of unitary structure factors,

N
Uh) = Fthy £ f(h) W (h) . ®)
a=1
As will be shown below, for structures in space group Pl or PT, the square of the
denominator on the right-hand side of (7) is equal to the probabilistic or statistical



50

expectation value of the squared structure factor magnitude, {|F(h)|% =
¥, [f.(h) W (], so the E normalization (Hauptman and Karle, 1953) is such that
{|E}?* = 1. From (4) and (5), the denominator on the right-hand side of (8) represents
the maximum possible structure factor magnitude, with all atoms scattering in phase
with &, = 0, so the I/ normalization (Harker and Kasper, 1948) is such that [U| < 1.
For structures that can be fairly approximated as being composed of equal
atoms with equal mean-square atomic displacements, substituting (4) into (7) and (8)
reduces them to

N N
Eth) = N % exp 2miher,), Uth) = N ¥ exp (2niher), and U(h) = E(h)/VN.
a=1 a=1

Thus, in terms of normalized or unitary structure factors, structures of equal atoms
with equal mean-square displacements are equivalent to structures of equal point-atoms
at rest. Structure factor normalization thus represents a simpiifying idealization of
crystal structure that has been widely employed in developing probabilistic theory for
the crystallographic phase problem. The crystallographic literature on intensity
statistics and normalization is sizeable, and excellent summary reviews of it (Shmueli
and Wilson, 1996; Giacovazze, 1996) are presented in the new, generally excellent,
Volume B of the International Tables for Crystallography.

2. Debye-Wall.er Factors

The atornic Debye-Waller factor appearing in equations (4) through (8) is (see, e.g.,
Johnson and Levy, 1974) given by

W,(h) = exp (-2m° (u.2Vd,?) , ()]

where {u,’) is the mean-square value of the displacement of atom a from its mean
position, u, = r, - {r,}, due to disorder and/or thermai vibration perpendicuiar to the
Bragg reflecting crysial planes with Miller indices (h, k, ) = (hea, heb, hsc) and
interplanar spacing dy, = 1/|h{, where [h| = (£, Z, h;h,a**a*)¥? = 2(sin 6, /2. In
general, atomic displacements are anisotropic and, for trivariate Gaussian distributions
of rectilinear displacements about the mean atomic position, (9) becomes

W,(h) = exp (-h"b,h) = exp (2n*H' U, H) , (10

where we employ matrix instead of vector notation in the exponential arguments in
which h” = [k k 2] and H" = [ha* k* c*] are row matrices, h and H are the
corresponding celumn matrices, and b and U are square matrices that represent
positive-definite, symmetric, second-rank tensors with six (i £ j = 1, 2, 3) independent
components for an atom with site symmetry 1. The b and U matrix elements are
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related by
pi=2nfadia®Ul, Ui=U, U"=(u)?), (11)

and necessary and sufficient conditions for positive definiteness of the mean-square
displacement tensors are given by the determinantal inequalities

U0, CM'U% >0, and Ut uRut] >o0. (12)
Ull U22 UZI UH U23
U!l Usz U33
In an isotropic approximation (9) reduces to
W (h) = W (|h]) = exp [-B,, , (sin 8,)7A%] , (13)

where B, = 8n°{u®). Equivalent isotropic (scalar) values can be obtained by
contraction of anisotropic (tensor) values,

B,.. = (87¥3) 5.5, (ara) a¥a® Ui = @/3) 5.5, (apa) b¥,  (14)

and, conversely, equivalent anisotropic values can be generated by expansion of
isotropic values,

U = By, /(BT7)}(a*ea®)(a* %) . (15)

3, Statistical Expectation Values and Probability Distributions

In (7), the normalized structure factor E(h) is defined with respect to the statistical
expectation value of the squared structure factor magnitude {|F(h)|?. For any function
y of a random variable x distributed according 1o a distribution density function p(x),
the statistical expectation value for y is given by
oo Hoa
W= yopwax/[ px) dx. (16)

If p(x) is a normalized probability density function, the denominator in (16) is unity,
and '

b
P=] p(x) dx an
a

gives the probability that a < x < b. For a representative finite sample of n values of
the quantity y, (16) can be approximated by a weighted average,
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n I
V=% wy/% w, (18)
=1 1=1

where the weight w, for each y, = y(x;) is proportional to the relative distribution
density p(x,). For distributions p(x) with finite variance,

var(x) = o%(x) = ((x = (X)), (19)
appropriate weights are the reciprocal variances, .
w; = al(y) . (20)
where, to approximation by a first-order Taylor expansion,
var(y) = cz(j;) = (dy/dx)* o*(x) . ' 20
If the o(y,) values are constant, unit weights w; = [ are appropriate, and (18) reduces
to the arithmetic average {y) = (Z,y)/n .

If y = y(x) is a multivariate function of » random variables, x = (x,, x,,..., X,),
the joint probability density function of x is the function p,(x) such that

b, b,
P={ ..[ pfx)dx. 22)
2 &

gives the probability that a,<x, <b,,..,and a,<x,<b,. The marginal probability
density fuaction py(x;) of an element x, of X, irrespective of the values of the other
elements, is

+o00 “+oo
pui) =1 . pxdx, (23)

where the (n — [)-fold integration is performed over all the elements of x except x;.
If pf{x. ¥} is the combined joint probability density function for two sets of random
variables x and y, then the conditional probability density function for x given fixed,
particular values for the elements of y is

Pe(X|¥) = pi(X. Y)/pu(y) - (24
Therefore,
Pi(%, ¥) = po(X]Y) PulY) = Pel¥ %) pu(X) 25

from which follows Bayes's Theorem,
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Pe(x1Y) = pe(¥1X) Pu(X)Vpy(¥) - (26)

The multivariate analog of the univariate relationship (21) is

n n
ai(y) = £ % (3y/ax)ay/dx) p, o(x) o(x) , 27
i=l j=1

where p, is the correlation coefficient,

o eovlxi, x) {06 = (%) (%5 = {0
P = e varGol® G — ) (0 = Gy

(28)

which has the property -1 < p; < +1. For the joint variation of two or more functions
of the same set of random variables,

n n
cov(y,, yp = Z X (dy;/dx)(dy;/axq) cov(x,, Xp) . 29
k=1 =1

If x represents a set of n parameters fi tted by least-squares minimization to a set of
m > n data y, then

var(x;) = cov(x;, X;) and cov(x;, xj). = af¢¥(m - n), (30)

where a7 is an element of the matrix [a"] inverse to the matrix {a,} of coefficients of
the least-squares normal equations, and ¥* = ¥, w; {y; — y(x)]* is the minimized least-
squares residual. Equations (21) and (27) through (30} form the basis of propagation-
of-error calculations of the effects of experimental measurement uncertainties on the
uncertainties of measurement-derived quantities.

4. Wilson Expectation Values {|F(h)|*) and the Wilson Plot

Historicaily, the literature on intensity statistics and normalization dates back to an
exchange of letters to Nature between S.H. Yii (1942) and A.J.C. Wilson (1942).
Wilson considered the squared structure factor magnitude from (4) for a structure in

space group Pl, N
|F()|*= F(h) F*(h)
= 2, %, f(h) fy(h) W (h) Wy(h) exp [2mihe(r, - ry)]

=T, [fh) W) + I, %, fi(h) f,(h) W (h) Wh) exp [2rihe(r, - 1],
(31)
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and pointed out that if the [F(h)|’ are locally averaged in spherical shells of fh{ =

1/d, = 2(sin 6,)/A then, in shells in which d, does not greatly exceed the near-neighbor
values of the interatomic distances [r, ~ r,{, the arguments ¢ = 2nhe(r, - r,) of the
functions exp (i$) = cos ¢ + i sin ¢ will sample the range 0 < ¢ (mod 2n) < 2w
more-or-less uniformiy, so that cos ¢ and sin ¢ wiil osciilate between positive and
negative values and average to practically zero. The statistical expectation value for
(31) will then be

(M) = Z, [f,(h) W, M) . (32)

Usually Bragg intensities (6) are measured, not on the absolute scale, but on a relative
experimental scale, so that ;

i |Fluw = K {Fla (33)
and, under the approximation of isotropic mean-square atomic displacements {13) that
are approximately the same for all atoms of the unit cell, (32) and (33) yield

(IF)| 2 = k2 exp [~2B,(sin 8,)¥A% X, £.%(h) . (34)

from which the absolute scaling factor £ and the overail mean-square atomic
displacement parameter B, can be estimated by means of a least-squares straight line
fitted to a plot of in {|F(h)|nea/Z, £}(h)) n} vs. {(sin B,)zflz)|h| , where the notation
(x)|,| denotes a local spherical |h|-shell average. From empirical estimates for & and
B, . experimental estimates of normalized (7) or unitary (8) structure factor
magnitudes can be obtained as

JE(h) | mess = |F(M)] sy K €XP [+By(sin 8047 [Z, £X 077, (35)
[U®) sy = [F()| s k €xp [+Bi(sin 8747 (Z, £(0]7" . (36)

5. The Wilson Distributions

Considering (31) and (32) further, Wilson (1949) derived the marginal probability
density functions for structure factor magnitudes and intensities to be expected from
uniform random unit-ceil distributions of atomic positions in the space groups Pl and
PT. Assuming a uniform random distribution of the atomic phase components

0 £ ¢, = 2xher, (mod 27) < 2=, the Pl derivation applies the central limit theorem
separately to the real part, A = T, f, W, cos ¢, = |F| cos ¢, and the imaginary part,
B=7Y, £ W,sin §, = |F| sin ¢, of the structure factor (4) and (5). The P1 derivation
follows the real part of the P1 derivation, allowing for halving of the number of
independent atoms since the atoms occur in pairs at positions +r, and —r,, which
restricts the structure factor phases to ¢(h) = 0 or 7.
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The resulting Wilson probability density functions for crystal structure factor
magnitudes |F| = (A? + B*)'? are then the Gaussian forms:

Acentric Pl distribution
pu(|E]) = QIFIKIFIY) exp (-|FIK[F|%) , var([F]) = (IF|» (37

Centric PT distribution
puCFD) = (A (|FIN1 exp [-|FIZQ(F1)],  var([F]) = ([F|% (38)

where (|F]?) is the Wilson expectation value given by (32). For normalized structure
factor magnitudes, |E| = |F|X|F|?", the probability density functions are:

Acentric pu(|E]) = 2]E| exp (-IE]® , (39
timit py(|E[)=0, var(|E|) = (JEI*) = | ;
|El—0

Centric pu(JE|) = (/)2 exp (~|E|¥2) , . (40)
limit pu(|El) = n)"?, var((E))=2(E|H=2.
|Ej—0 -

And for intensities, I = |F|?, the probability density functions are:

Acentric (D) = (D" exp (-IKT)) , “n
limit py(D = O™, var(l) = () ;
-0

Centric pu() = CuKD)Y™" exp (-1/2(D)] , (42)
limit py(I) = o , var(l) = 2(I) .
-0

The probability density functions (39) through (42), and the corresponding cumulative
distribution functions

X
N&x) =/ pux)dx, (43)
0

are illustrated in Figure . The acentric P1 distributions are narrower than the centric
PT distributions, with lower probabilities of very small or very large values of |E|, |F|,
or L
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Figure 1. The Wilson distribution probability density functions, p{|E|) and p{|F[%), and cumulative

distribution functions, N(|E]) = IUH p(|E]) dIE] and N(Z) =|? p(Z) dZ, where Z = [F}%|F|?.
Acenyric P1 ' Centric PT

p({ED) = 2{E| exp (~{E[) p(|E]) = (x)"* exp (-{E|¥2)

p({F1*) = {[F1%)" exp (~[FI*X|F}%)) p(|F|%) = (2= [FI{IF1))™ exp (~[FI/(X{F{)

NGED = 2 [/8 x exp (+x dx = 1 ~ exp (-[E])  N(IE]) = 2/m)? f,[¥l exp (=x*2) dx = erf (EIV2)

N(Z) = 2 exp (—x) dx = 1 = exp (-Z) N(Z) = (2r) "2 [F x77 exp (~1/2) dx = erdf ((Z/2)"]
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The 1 and PT Wilson distributions are archetypal. Their forms hold even for
space groups of higher symmetry, if the asymmetric crystal chemical unit of the umit
cell locaily approximates a random-atom Pl or PT structure. The adaptation to higher
symmetry is an integral factor € > | multiplying the distribution parameter {JF|? so
that (32), (34) and (35) become

(IF(h)|) = e(h) I, [£,(h) W h)]*, (44)
{IF(h}| > = k™ exp [-2B,(sin 0,)¥1%] eth) X, £Xh) , (45)
B neas = [F() | eas K 2xp [+B,o(sin 8,074 [eh) T, £ .  (46)

We call the factor e(h) the degeneracy of the reciprocal lattice point h because it
accounts for symmetry-dependent multiple enhancements of Pl or PT |F(h)|*
expectation values. The degeneracy factor is given by

eh) = m, €'th) , 47
where m, is the lattice multiplicity,

m; = 1 for primitive P-lattices,
2 for C-, B-, A-, or I-centered lattices,
4 for F-centered lattices, or
" 3 for R-centered lattices on hexagonal axes, (48)

and
€th)=1,2,48 3,6, 0ri12 (49}

is a projection symmetry muitiplier for certain classes of zonal or axial reflections in
particular reciprocal lattice point groups (Rogers, 1965, 1980). The m, enhancements
arise from the systematic extinction of a fraction {1 — (I/m_ )} of the reflections due to
lattice centering and the consequent concentration of the total scattering in the allowed
fraction 1/m, of the reflections. The ¢’ enhancements arise from superposition of
symmetricaily equivalent atoms in projection onto mirror planes or rotation axes. In
the triclinic point groups 1 and T, €’ = 1 for all reflections. In all point groups,
€'(hkd) = 1 for all non-axial, non-zonal, general reflections; but in the monoclinic point
group 2/m (b-axis unique), for example, the zonal hO¢ and axial 0kO reflections are
special, and have €’(h0¢) = 2 and €'(0k0) = 2, due to superposition in projection of
mirror-equivalent and rotation-equivalent atoms, respectively. A useful compiete table
of &’ values has been given by [wasaki and Ito (1977).
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6. Wilson Normalization with a Statistical Expectation Value of the Debye-Waller
Factor

Underlying the normalization equations (44) through (46) and (36) is the assumption
that the atomic Debye-Waller factors vary little from atom to atom in the unit cell.
For many crystals this is hardly the case. In small-unit-cell molecular crystals, mean-
square atomic displacements due to thermal vibration are usually larger for atoms at
the pertphery of a molecule than for atoms near the molecular center of mass, and
larger for conformationally flexible than for conformationally rigid functional groups.
In crystals of biological macromolecules, displacements due to disorder and/or thermal
vibration are generaily larger for atoms at the bijomolecular surface than for atoms in
the biomolecular core, larger for side-chain than for main-chain atoms, and larger for
solvate water molecules than for atoms of the biomolecule.

The crude approximation of constant atomic Debye-Waller factors can be
replaced by a less crude approximation if, instead of factoring a squared-Debye-Waller
factor W? out of the atomic sum (32), we factor-out the statistical expectation value
(W% = (exp (-2Bs?), where s = (sin 8)/A. Assuming that the unit-cell distribution of
atomic B values can be fairly approximated by a normal distribution

p(B) = [(2m)" 041" exp (B — pg)#(204)] , (50)

with mean p, = (B} and variance 6’ = (B — (B))?), it has been shown (Blessing,
Guo, and Langs, 1996) that (16) yieids the expectation value

(W?) = (exp (~2Bs)) = exp [-2(5 ~ 957 s%)s7) . (51)

This indicates that, due to the spread of the unit-cell distribution of atomic mean-
square displacements, the expectation value of the Debye-Wailer factor corresponds to
an effective overail B value, B4 = (B) = ((B — (B))%s?, that is smaller than the mean
B and that decreases with increasing (sin 8)/A.

Normalization effects of the spread of the distribution of mean-square atomic
displacements can be sizeable because, especially in macromolecular crystals,
{(B ~ (B)))"? = (B) is not uncommon for averages of structure-refined B vaiues. The
latter generally exhibit distributions that are positively skewed (since, of physical
necessity, B,;, > 0) and more sharply peaked than normal distributions. This suggests
that (51) might be improved by employing an expansion about (50) to derive an
expression for (W?) that includes, in addition to the dispersion term in (s%? a
skewness term in (s%)° and a kurtosis term in (s%)*. It has, however, been showa that
in practice, for data sets that extend to d, s 2.5 A resolution, such refinements are not
necessary. Normalization via (51) of data from several well-determined protein crystal
structures was shown to produce |E,,| values that agree with |E,,,.| values calculated
from the refined r, and B, parameters as well as the un-normalized |F,,| values agree
with the corresponding |F,.| values (Blessing, SGuo, and Langs, 1996).
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In terms of (51), with s, = (sin O,)/A, the empirical normalization equations
(45), (46), and {36) become

(JFM)] D = k2 exp (-2(pg ~ 055,781 () Z, £i(h) , (52)
[Eh) | pess = [F(h)}| s k €xp [(Mg — 057 8,0)s,7] [e) Z, £3(0)]72, (53)
[UM) | ews = 1P| ene K €Xp (15 ~ 057 550)5,7] [Z, £(0)]7' . (54)

Via the Debye-Waller-factor relationships (10) and (13) through (15), these are readily
recast in terms of overail anisotropic mean-square displacement parameters as

(IF(h)| ., = kK exp {=2[h" p, h — (b 0, B)*]} €(h) Z, £,5(h) , (55)
1EM) eas = |F(R) es k €xp (A" py b — (AT 0, b)Y [eh) 2, £ 177,  (56)

[UM)| qess = |F(h) | s K €xp (W7 py b = (07 0, h)?) (2, £()17, (57)

where here, as in (10), we employ matrix instead of vector notation in the exponential
arguments in which h™ = {h k ¢] is a row matrix, h is the corresponding column matrix,
and p, and 0, are symmetric matrices in which, to a first approximation from fitted
isotropic, scalar values pg and oy,

Hy, eqii = g a*ea®/4 and Ub.eq}j = gga*eat/d . (58)

7. Non-Wilson Characteristics of Intensity Distributions from Protein Crystals

The Wilson distributions have very wide ranges of effective applicability, but
significant departures from the Wilson distributions do occur when the asymmetric
crystal chemical unit does not locally approximate a P1 or P1 structure of uniformly
randomly distributed equal atomns. Deviant cases include: smail, highly symmetric,
highly heteroatomic structures; pseudosymmetric structures in which the
crystallographic asymmetric unit has noncrystallographic symmetry or quasi-symmetry;
and heavy-atom structures in which a small subset of the atoms of the asymmetric unit
scatters much more strongly than the other atoms. Structure factor probability density
functions for such cases have been derived as Edgeworth, Gram-Charlier, or Fourier-
Bessel series expansions about the P1 or PT Wilson probability density functions, but
discussion of these analyses would be beyond the scope of this chapter (see. e.g.,
Shmueli and Wilson, 1996; Castleden and Fortier, 1994).
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intensity and structure factor distributions from protein crystals depart from the
Wilson distributions in several characteristic ways, because unit-cell distributions of
atomic positions in protein crystals are characteristically nonuniform. Some 25 to
65% of the unit cell volume in protein crystals is occupied by solvent, mainly liquid-
 like water, filling the space between the large protein motecules (Matthews, 1968).
Since H,0-H,O hydrogen bond distances OO are ~2.8 A, while protein C~0, C-N,
C~C covalent bond lengths are ~1.2 to ~1.5 A, average electron densities are lower in
the solvent regions in protein crystals than in the protein regions. Simple empirical
calculations (Blessing, Guo, and Langs, 1996) show that (p,i{Psonens = #/3. In
addition, protein molecules have intricately folded polymeric -C*~CO-NH-C*~
structures with the fundamental repeat distances summarized in Table 1. These

Table I. Fundamental repeat distances in protein crysials
feom standard bond lengths, valence angies, and conformation
angles in peptides and water-water hydrogen bond geometry.

Repeat Unit Repeat Distance
Clex)C(ety,) 3.82A
Clex,_ )y Clwy,) 542 A in x-hetices
6.92 A in B-sheets
H,0-H,0 275 A O-~0inice
H,0 109.5° 000
H,0 H,0 449 A OO

ubiquitous molecular repeat distances in the range ~6 A > |r, - ry| > ~3 A, along
with -protein-(H,0), - protein-(H,0), ' lattice or sub-lattice repeat distances in the
range |r, — r,} > ~30 A, cause reflections with d, > 3 A to violate the condition

d, s |r, - r,] that underlies the deduction of the Wilson expectation values (32) and
(44) (see also ‘Harker, 1953). As a resuit, plots of tn (|F(h)|,.7le(h)Z, f;’(h)])]hi
vs. ((sin Gh)zllz)l,,, characteristically show pronounced nonlinear oscillations for

d = A2 sin 0) 2 3 A, the most prominent deviations being a local minimum at

d = 6 A auributable to destructive interference of beams Bragg reflected from
interleaved crystal planes corresponding to C(et,_,)--C(ee;)-C(«,,,) repeats, and a local
maximum at d = 4 A attributable to constructive interference of beams reflected by
adjacent planes corresponding to C(a;)-~C(«a,,,) repeats. Typical examples of these
effects are discussed in more detail and illustrated in Figures 1, 2, and 3 of Blessing,
Guo, and Langs (1996); Figure 5 of Bricogne (1984); Figure 2 of French and Wilson
(1978); and Figures 4 and 6 of Luzaui (1955).
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8. Data Reduction and Error Analysis Procedures

Probabilistic phasing methods depend criticaily on normalized structure factor data sets
that are as accurate and complete as possible. Foremost considerations include
specimen crystal quality, insttument performance and calibration, and measurement
strategy and technique. No less important are data processing procedures to reduce the
in general multiply redundant set of raw intensity measurements to a unique set of
structure factor magnitudes and, in the process, assess and preserve experimental
accuracy and precision.

8.1. BACKGROUND SUBTRACTION, PEAK INTEGRATION, AND NET
INTENSITY ESTIMATION

The procedures we employ for diffraction data from small-unit-cell crystals measured
with four-circie diffractometers and single-reflection or point detectors have been
described in some detail elsewhere (Blessing, 1987, 1989). The scheme of the
procedures we employ for diffraction data from protein crystals measured using the
oscillation method and area detectors is diagramed in Figure 2. Typically we process
the oscillation frame images using the Denzo program (Otwinowski, 1993; Gewirth,
Otwinowski, and Minor, 1995} to determine the crystal orientation and reflection
indexing, the fully or panially recorded status of each reflection spot image, and the
Lorentz- and polarization-corrected full- and partial-reflection net intensities

|F[% = (LP)™ (Leyx — Tonckgrome) a0d their statistical experimental uncertainties o(|F{?).
In place of the Scalepack program that is part of the Denzo program package, we
employ our programs denzox and sortav 1o evaluate interframe scale factors (Hamitton,
Rollett and Sparks, 1968), scale the full and partial reflections, and sum the scaled

partial reflections.

8.2. DATA MERGING AND EXPERIMENTAL UNCERTAINTY ESTIMATION

We also use the sorfav program to evaluate and apply, when necessary, an empirical
correction (Blessing, 1995) for residual anisotropic absorption-like errors not corrected
by the interframe scaling; to average equivalent measurements using robust/resistant
averaging weights to down-weight measurements that are outliers from multiple-
measurement sample medians (Blessing, 1997a) {a procedure we have found to be
superior to our earlier practice of normal-probability down-weighting of outliers from
unit-weighted sample means (Blessing and Langs, 1987)]; and to perform a bivariate
analysis of variance against |F{Z and (sin 8)/A in order to improve the experimental
uncertainty estimates obtained by propagation-of-error calculations applying (21) and
(27) through (30) at each stage of the data processmg
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"sertav.dat"' (1)

"sortav.datc" (2)

"bayes.dat”

“levy.dat"

SIR oxr SAS cases

"locsel . datc

*diffe.dac"

{concatenated set of

—e

DM, SIR, SAS, MIR, MAD, MR...

Denzo

Peak-Background Integratibn
[F{hke) |?
Full/Partial Flag,

4

= (Lp) "MLy - Iyl of(|F{hke) )
Frame Number

“frames.x"

"denzo.x" files)

denzox/get fulls
+
"data.fulls"
{

sortav/interframe scale

"scalek.dat" + "frames.x*

4
denzox/sum partials
L

*data.tcotal"”

sortav/absorb/merge

"dataimerged'

baves
iR

”dataibayes“

levy or rogers —
{

"eval.dat"

{
eval -
1

+ "data.bayes"

"data.eval"
L

scl

*data.locscl® + "eval.datc"

"data.diffe"
L

Phasing Trials

"rogers.dat*®

Figure 2. Flow chart for processing diffraction data from protein crystals. Program names are indicated
as program, and file names are indicated as "£ile-. Files named *program.dat® are control
data files. and files named "data.program” are retlection data files.
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8.3. BAYESIAN POST-PROCESSING

The Laue-group or point-group unique data set resulting from the sorzav processing is

then post-processed with our program bayes, which applies a Bayesian statistical

analysis (French and Wilson, 1978) to improve weak-reflection data with [F[? <

36(|F)?) and to derive appropriate values for the corresponding |F} and o(|F]) data.

Especiatly for protein crystals, the Bayesian post-processing can be important. because

improving weak-reflection data is tantamount to increasing experimental resolution.
The post-processing applies Bayes's theorem (26) in the form

pc(D == oY) pudd) 5 . (59)
Posterior o= Likelihood X Prior ,
Bayesian =< Normal x Wilson ,
where J = |F,(h)|’ represents the “true” intensity, and 1= [F(h)|%,,, represents the
measured intensity, for a given reflection h. The a priori expectation py(J) is the

Wilson distribution (41) if h is an acentric reflection, or (42) if h is a centric
reflection. From the central limit theorem, the likelihood is a normal distribution of

measurement errors,
pc] D) = [2n) %07 exp [~ - D207, (60)

which, due to the statistical experimental uncertainty ¢ = o(I) = o([F(h}|?,.J, can
yield I < 0 when J = 0 even though J = 0 is a physical necessity. The a posteriori
Bayesian distributions are then

Acentric Pe(J{I) o< exp {-( ~ N¥(20%] exp (—JXT)) . (61)
Centric peld|T) o= 2 exp (-(I — N(20%) exp [-1/(2(0))] , (62)

which, after "completing the square” and rearranging and collecting terms in the
exponential arguments, become
Acentric p(i|1) = exp [={J = [T - (¥ 20,
pelI[D) < exp [=((Wo) = [Wa) ~ (@/INY/2) for 20, (63)
{pc(lll)=0 for T<0;
Centric  ped|D) = 1 exp 1 = {1 - for2yn 203},
2D = 12 exp W) - (Wo) - (2B for 120, (68
{pC(J]I) 0 for 1<0;
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where the physical requirement J 2 0, even if I < 0 due to peak-minus-background
statistical fluctuations when J = 0, is noted explicitly.

The probability density functions (63) and (64) are then used in (16) to
improve the measured intensity data to Wilson-conditional Bayesian expectation

values,

[EP=]J p0Ddl  and  oX(F,|) =] G -|F] pDdT,
0 0

and (65)

IF,j =] IMpgidl  and o%F,|) ={ (" - |F,|)* pc(JID dJ,
1] ' 0

all of which, including those for weak J = ( reflections that yield T < 0, are non-
negative.

The experimental variables in (63) and (64) all appear in the dimensionless
arguments {(V/o) — [0/(q ()]}, where [=|F(h)|’ ., 0= o(JF()| .0,
g = 1 for acentric h, q = 2 for centric h, and the Wilson distribution parameter
) = (J(h)} is estimated empirically from the local spherical [h{-shell average of the
measured intensities as {J(h)) = e(h){|F llmm/e)},,’ . The integrals (65) have been
evaluated numerically and tabulated against arguments, —4 < (Vo) — [o/q{I))] < +4,
which cover the range in which effects of the Bayesian treatment are significant
(French and Wilson, 1978). The magnitudes of the changes |{F,{? - |F|?,,,] and
|0(|F,|?) = 0(|F|*ys)| depend primarily on I/o and secondarily on o/(q{J}}; the
magnitudes increase with decreasing /o and increasing o/(q (J)). In general, the
effects of the Bayesian treatment are: all |F|?,, <0 are replaced by |F|*20,
and most |F|%,.,, with 0 < |F% ., < 30(|F|%.. are replaced by |F,|? £ |F|% u:
6(|F,]*) < a(|F|’ ) since the Bayesian treatment tends to reduce measurement
uncertainties by imposing the Wilson distribution requirements; and |F,| < (JF ])"
since, even if negative and positive errors in |F|?,., are equally likely, negative
errors are less likely than positive errors in the necessarily non-negative |F | and [F,|?.
If /o >> a/{q{J)), the distributions {63) and (64) reduce 1o zero-mean, unit-variance
nommal distributions of (I - J)/o. In practice, if 12 3¢([) the commonly used
relationships [F,| = (|F,[9" = I"? and o(|F,|} = o(JF,|M(2|F,]) = a(D/(21'?) are
valid, and the Bayesian modifications are negligible.

8.4, STRUCTURE FACTOR NORMALEZATION

Since the Bayesian post-processing requires the evaluation of the local spherical
|hi-shell averaged intensities, our bayes program also produces a set of locally
normalized data,

[Eo(h)| = [Fy(h)|/[eth)({F,|/e) (1. (66)
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To derive giobally normalized data (53} or (56), the unique {F,| data set from the
bayes program is analyzed with our program fevy (Blessing, Guo, and Langs, 1996} to
evaluate by least-squares fit the parameters &, g, and G4 of (52), or &, p,’ and 0,
of (55). In turn, the fitted parameters are used in our program eval to obtain the
normalized structure factor magnitudes (53) or (56). For both the locally and globaliy
normalized |E| values, ¢(]E|) values are evaluated by propagation-of-error calculations
based on (21) and (27) through (30) to include the effects of error-of-fit uncertainties
of the normalization parameters. An important feature of the /evy program is that it
uses a logarithmically linearized least-squares fit based on (45) only to obtain a first
approximation to the scale and mean-square displacement parameters, which the
program then refines by properly weighted, iterative non-linear least-squares fit to the
individual-reflection data, |F (h)|¥[e(h) Z, f,(h)], rather than logarithms of local
spherical |h|-shell data averages (Levy, Thiessen, and Brown, 1970). The individuai-
reflection fitting provides a direct evaluation of anisctropy of the mean-square-
displacements distribution parameters p, and o, and it allows the relatively many
Wilson-distributed high-resolution data to overcome, or at least counteract, effects of
non-Wilson distributions of the relatively few low-resolution data. {We have aiso
found that the procedure in our program fevy is often superior to a corresponding
procedure in our earlier program rogers (Blessing and Langs, 1988), which estimates
the parameters & and p,’ through an analysis of the Patterson origin peak (Rogers,
1965; Nielsen, 1975).] For low-resolution data sets with d_, > 2.5 A, global
normalization via the fevy-eval or rogers-eval programs might be unreliable, and it
might be better to resort to the local normalization (66) provided by the bayes
program.

9, Treatment of SIR and SAS Data

The cases of single isomorphous replacement (SIR) and single-wavelength anomalous
scattering (SAS), and their extensions to the muitiple isomorphous replacement (MIR)
and multi-wavelength anornalous dispersion (MAD) cases, coupled with Patterson and
molecular replacement (MR) analyses provide the classical tools of protein
crystallography for dealing with the phase problem (see, ¢.g., Rossman and Arnold,
1996; Vijayan and Ramaseshan, 1996). Much of the current research on so-called
direct methods (DM) probabilistic phasing is directed toward integrating DM with SIR,
MIR, SAS, MAD, and MR techniques. -

9.1. LOCAL SCALING

Given an SIR pair of data sets, |Fy,{h)| from a native protein crystal and |Fp.(l}|
from an isomorphous heavy-atom derivative crystal, or an SAS data set of Bijvoet or
Friedel pairs, |F(+h)} and |F(~h)| from a crystal measured at an X-ray wavelength
at which the crystal exhibits significant anemalous dispersion due to damped resonant
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scattering, classical SIR or SAS methods seek to determine the substructure of heavy
atoms, or of atoms that dominate the anomalous scattering, from Patterson syntheses
computed with squared difference coefficients ([Fp,,[ ~ [Fyal)? of (|F,ul = [F_u})%.
These, like any analyses based on difference data, are highly susceptible to effects of
genmental errors, since difference data Ax = x, - x, have uncertainties o(AX) =
o%(x,) + 0%(x,)]"* that are necessarily larger than either of the individual x, and x,
data uncertainties.

To treat such cases, we employ our program locsc! {Blessing, 1997b) to apply
the local scaling procedure introduced by Matthews and Czerwinski (1975). The
procedure assumes that errors that obscure the real differences between |F\| and |F,|
pairs of data sets can be in large part empirically corrected by locally variable scale
factors q = g(h) defined by

AlF| = IR - q|F,] (67)
and estimated by least-squares fit minimizing
h+Ah
x¥’= Z wl(F[/[F.)) = qF, (68)
-A
where  w = w(h) = o(|F,|/|F,{), and the notation
h+Ah h+Ah  k+Ak  +AQ
2 X 3 = 2. R (69)

h~Ah ~ n=h-Ah x=k-Ak A=t-A¢

denotes summation over a local block of reciprocal lattice points surrounding, but not
including, the point of interest, hké. For exampie, Ah = Ak = A? = | defines a raster
or three-dimensional moving window of (3x3x3) ~ 1 points for the local scale factor
fit. The raster semidimensions need not, however, be equal. For a crystal with unit
cell dimensions ¢ >> a > b, and therefore reciprocal ceil dimensions c* << a* < b¥*,
one might choose semidimensions Ah = 2, Ak = 1, A¢ = 4 and use a raster of
(3%3x9) — 1 points to sample local blocks of the reciprocal lattice that have edges of
roughly equal length along a*, b*, and c*. Qur program locsc! chooses statisticaily
optimum raster semidimensions by analyzing the global variation of the locally fitted
scale factors and their error-of-fit uncertainties as the semidimensions Ah, Ak, and A¢
are iteratively varied in proportion to the unit cell dimensions a, b, and ¢, so that the
raster retains the shape of an approximately rhombic parallelepiped with edges parallel
to the a*, b*, and c* axes of the reciprocal lattice. The locsc! program aiso applies
(21) and (27) through (30) to propagate the error-of-fit uncertainties of the local scale
factors into the o(|F|) and o(|E|) values corresponding to the locally scaled |F| and
|E| values.
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9.2. DIFFERENCE STRUCTURE FACTOR NORMALIZATION

Among early efforts to exploit probabilistic phasing methods in protein crystallography
were applications of the MULTAN program (see, e.g., Main, 1976, 1985) employing
SIR (Wilson, 1978) or SAS (Mukherjee, Helliwell, and Main, 1989) difference-
magnitude data, In connection with recent further work to develop stronger
probabilistic methods for phasing difference magnitudes (Langs, Guo, and Hauptman,
1995; Smith, Nagar, Rini, Hauptman, and Blessing, 1997), we have developed a
program diffe (Blessing, 1997¢) that impiements the following difference normalization
procedures,

9.2.1. SIR Differences
In the SIR case the magnitude differences of interest are

A = [Foo| ~ {Fyal (70)
which, given the corresponding locally scaled |E{ magnitudes, can be calculated as
A= (eh Ea‘Dcr ]falz)ln IEDe.rl e (Eil EI.NSI ]falz)m IENa:] g (71)

We recail that for structure factors F = |F] exp (i$) with |Fj <X f,, the Wilson
distributions give the intensity expectation value (|F|% = ¢, f. . Therefore, for
difference structure factors F, = |A] exp (idyq,,) With |A| < [Fyay| £ Zopan (Tl
we expect squared SIR difference magnitudes with

<IAIZ> < (]Fﬂca\ryI:) =€, za.ﬂuvy ]fa]2 =€, [(ZQ.D« Ifulz) - (za.Nal lfaiz)] .} (72)

Thus, grﬂatest-loweﬁbounéi estimates for SIR difference-E magnitudes can be
calculated as

_ |(Za.m: [falz)m iEberl e (zn.Nat Ifarz)m IEN&{] !

E;| = ; 73
! dl q[(z._n,, Ifa'z) - (Zn.‘ﬂn tfall)] = ( )

where, following (51},
q=gyexp (q,8° + Q8" , inwhich s=(sin 8VA, (74)

is a least-squares-fitted normalization scaling function that imposes the requirement
(JE4|® = | and is intended to empirically adjust for effects of: imperfect isomorphism
of the derivative and native crystals; inaccurately known heavy-atom content due to
multiple derivative sites and/or disordered partial site occupancies; and differences
between the unit-cell distributions of mean-square atomic displacements in the heavy-
atom substructure, the derivative crystal, and the native protein crystal.
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The diffe program accepts user-supplied input cutoff values X . ¥pin> a0d Sy
to limit the processing to data pairs with min{|Eyy|/0(|Exul)s [Eped/0(|Eperd)] 2 Xy
”EDtr! - YENatf VIOZ(IBDerI) + 02(’ENalD]m 2 Ymin» and 5 = (Sin eh)'{;" < Smax »
where typically X, = 3, Yui = 1, and s, is determined by inspection of a plot of the
spherical shell averages {{E4|%, vs. (s) from a preliminary run of the diffe program
with unlimited s,,,. The purpose of the s_,, input cutoff is to prevent generating
spuriously large |E,| vaiues for high-resolution data pairs measured with large
uncertainties due to the general fall-off of scattering intensity with increasing
scattering angle. The program propagates the error-of-fit uncertainties of the
difference normalization scaling parameters into 6(|E,|) values, and accepts a user-
supplied output cutoff value z, so that |E,| values for which [E,|[/0([E4]) < Zp,,
where typically z.;, = 3, are rejected as too unreliable to be used in subsequent
phasing calculations.

9.2.2. SAS differences
In the SAS case the magnitude differences of interest are

A= |Fal - IFal. | %)

which, given the comresponding locally scaled |E| magnitudes, can be calculated as
A = (&%, £ ([Ewl = IEAD

A = (& 5,60 + 7 + V1 (Bl - [EL)) - (76)

. Then, for structure factors F, = |A| exp {i[d, +(w/2)]} with |A| <2|F"| £2Z,f”
and with ¢, representing the phase of the F.? + F component of the total structure
factor, F= FP+ F +F” = F, .. + F2+F + F”, we expect squared SAS
difference magnitudes with

(1A% S 2(F"1%) = 2¢, I, (£,")* . (77

Thus, greatest-lower-bound estimates for SAS difference-E magnitudes can be
calculated as

(. £ ||Eal = [ELl]
2q(Z, (£1"

where, again, q = qg exp (q, s* + g, s%) with s = (sin 8)/A is a least-squares-fitted
normalization scaling function that imposes the requirement ([E,|% = 1 and, in the
SAS case, is intended to empirically adjust for effects of: inaccurately known
chemical composition of the unit cell; muitiple sites and/or disordered partial site
occupancies in the anomalously scattering substructure; inaccuracies in the values of

|Es| = (78)
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the anomalous scattering corrections " and {7 and in the assumption that they are
independent of both the magnitude and direction of h; and differences between the
unit-cell distributions of mean-square atomic displacements in the strongly
anomalously scattering substructure and the structure overall.

The diffe program again accepts user-supplied input cutoffs X, ¥y, and Sy,
propagates the error-of-fit uncertainties of the normalization parameters, and accepts
an output cutoff z.,, . The use of the data selection variables in the SAS case is
directly analogous to their use in the SIR case described above.
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